Structure of the SPRY domain of the human RNA helicase DDX1, a putative interaction platform within a DEAD-box protein

نویسندگان

  • Julian N. Kellner
  • Anton Meinhart
چکیده

The human RNA helicase DDX1 in the DEAD-box family plays an important role in RNA processing and has been associated with HIV-1 replication and tumour progression. Whereas previously described DEAD-box proteins have a structurally conserved core, DDX1 shows a unique structural feature: a large SPRY-domain insertion in its RecA-like consensus fold. SPRY domains are known to function as protein-protein interaction platforms. Here, the crystal structure of the SPRY domain of human DDX1 (hDSPRY) is reported at 2.0 Å resolution. The structure reveals two layers of concave, antiparallel β-sheets that stack onto each other and a third β-sheet beneath the β-sandwich. A comparison with SPRY-domain structures from other eukaryotic proteins showed that the general β-sandwich fold is conserved; however, differences were detected in the loop regions, which were identified in other SPRY domains to be essential for interaction with cognate partners. In contrast, in hDSPRY these loop regions are not strictly conserved across species. Interestingly, though, a conserved patch of positive surface charge is found that may replace the connecting loops as a protein-protein interaction surface. The data presented here comprise the first structural information on DDX1 and provide insights into the unique domain architecture of this DEAD-box protein. By providing the structure of a putative interaction domain of DDX1, this work will serve as a basis for further studies of the interaction network within the hetero-oligomeric complexes of DDX1 and of its recruitment to the HIV-1 Rev protein as a viral replication factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An RNA helicase, DDX1, interacting with poly(A) RNA and heterogeneous nuclear ribonucleoprotein K.

Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multifunctional protein known to be involved in the regulation of transcription, translation, nuclear transport, and signal transduction. To systematically obtain insight into mechanisms of hnRNP K activities, we set out to identify protein factors that interact with hnRNP K by using glutathione S-transferase-hnRNP K affinity chromatograp...

متن کامل

Association of human DEAD box protein DDX1 with a cleavage stimulation factor involved in 3'-end processing of pre-MRNA.

DEAD box proteins are putative RNA helicases that function in all aspects of RNA metabolism, including translation, ribosome biogenesis, and pre-mRNA splicing. Because many processes involving RNA metabolism are spatially organized within the cell, we examined the subcellular distribution of a human DEAD box protein, DDX1, to identify possible biological functions. Immunofluorescence labeling o...

متن کامل

Overexpression of a DEAD box protein (DDX1) in neuroblastoma and retinoblastoma cell lines.

The DEAD box gene, DDX1, is a putative RNA helicase that is co-amplified with MYCN in a subset of retinoblastoma (RB) and neuroblastoma (NB) tumors and cell lines. Although gene amplification usually involves hundreds to thousands of kilobase pairs of DNA, a number of studies suggest that co-amplified genes are only overexpressed if they provide a selective advantage to the cells in which they ...

متن کامل

DDX5 Facilitates HIV-1 Replication as a Cellular Co-Factor of Rev

HIV-1 Rev plays an important role in the late phase of HIV-1 replication, which facilitates export of unspliced viral mRNAs from the nucleus to cytoplasm in infected cells. Recent studies have shown that DDX1 and DDX3 are co-factors of Rev for the export of HIV-1 transcripts. In this report, we have demonstrated that DDX5 (p68), which is a multifunctional DEAD-box RNA helicase, functions as a n...

متن کامل

The putative RNase P motif in the DEAD box helicase Hera is dispensable for efficient interaction with RNA and helicase activity

DEAD box helicases use the energy of ATP hydrolysis to remodel RNA structures or RNA/protein complexes. They share a common helicase core with conserved signature motifs, and additional domains may confer substrate specificity. Identification of a specific substrate is crucial towards understanding the physiological role of a helicase. RNA binding and ATPase stimulation are necessary, but not s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2015